Please solve this question

The probability that a randomly selected x-value from the distribution will be in the interval:
The probability of a normal distribution can be determined from the symmetrical curve between 1 to 100%.
From the information given:
To determine the probability that a randomly selected x-value is in the given interval:
[tex]P(35 < x < 45) = P(\dfrac{35-40}{5} < Z < \dfrac{45-40}{5})[/tex]
[tex]P(35 < x < 45) = P(\dfrac{-5}{5} < Z < \dfrac{5}{5})[/tex]
[tex]P(35 < x < 45) = P(-1 < Z < 1)[/tex]
[tex]\mathbf{P(35 < x < 45) = P[Z\le 1] -P[Z\le -1]}[/tex]
Using normal distribution table:
P(35 < x < 45) = 0.8414 - 0.1587
P(35 < x < 45) = 0.6827
[tex]P(30 < x < 40) = P(\dfrac{30-40}{5} < Z < \dfrac{40-40}{5})[/tex]
[tex]P(30 < x < 40) = P(\dfrac{-10}{5} < Z < \dfrac{0}{5})[/tex]
[tex]P(30 < x < 40) = P(-2 < Z < 0)[/tex]
[tex]\mathbf{P(30 < x < 40) = P[Z\le0]-P[Z\le -2]}[/tex]
Using normal distribution table:
P(30 < x < 40) = 0.5 - 0.02275
P(30 < x < 40) = 0.47725
Learn more about the probability of a normal distribution here:
https://brainly.com/question/4079902
#SPJ1