Use the quadratic formula to find both solutions to the quadratic equation
given below.

The solution of the equation are [tex]x = \frac{7 + \sqrt{61}}{6}[/tex] and [tex]x = \frac{7 - \sqrt{61}}{6}[/tex]
The equation is given as:
3x^2 - 7x- 1 = 0
The quadratic equation is represented as:
[tex]x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}[/tex]
So, we have:
[tex]x = \frac{7 \pm \sqrt{(-7)^2 - 4 *3 *-1}}{2*3}[/tex]
Evaluate the expression
[tex]x = \frac{7 \pm \sqrt{61}}{6}[/tex]
Expand
[tex]x = \frac{7 + \sqrt{61}}{6}[/tex] and [tex]x = \frac{7 - \sqrt{61}}{6}[/tex]
Hence, the solution of the equation are [tex]x = \frac{7 + \sqrt{61}}{6}[/tex] and [tex]x = \frac{7 - \sqrt{61}}{6}[/tex]
Read more about quadratic formula at:
https://brainly.com/question/1214333
#SPJ1