Respuesta :
looking at that picture
we could use the pythagorean theorem to find the adjacent side,
or cosine value
[tex]\bf tan\left[ sin^{-1}(x) \right]\implies \begin{cases} x=sin(\theta)\\ or\\ \cfrac{x}{1}=sin(\theta)\implies \cfrac{x=opposite=b}{1=radius=c} \end{cases}\\ \\ \quad \\ c^2=a^2+b^2\implies \sqrt{c^2-b^2}=a \\ \quad \\ \sqrt{1^2-x^2}=a=cos(\theta)\\ ----------------------------\\ thus \\ \quad \\ tan\left[ sin^{-1}(x) \right]\implies tan(\theta)\implies \cfrac{sin(\theta)}{cos(\theta)}\implies \cfrac{\frac{x}{1}}{\sqrt{1-x^2}} \\ \quad \\ \cfrac{x}{\sqrt{1-x^2}}[/tex]
we could use the pythagorean theorem to find the adjacent side,
or cosine value
[tex]\bf tan\left[ sin^{-1}(x) \right]\implies \begin{cases} x=sin(\theta)\\ or\\ \cfrac{x}{1}=sin(\theta)\implies \cfrac{x=opposite=b}{1=radius=c} \end{cases}\\ \\ \quad \\ c^2=a^2+b^2\implies \sqrt{c^2-b^2}=a \\ \quad \\ \sqrt{1^2-x^2}=a=cos(\theta)\\ ----------------------------\\ thus \\ \quad \\ tan\left[ sin^{-1}(x) \right]\implies tan(\theta)\implies \cfrac{sin(\theta)}{cos(\theta)}\implies \cfrac{\frac{x}{1}}{\sqrt{1-x^2}} \\ \quad \\ \cfrac{x}{\sqrt{1-x^2}}[/tex]
If you're using the app, try seeing this answer through your browser: https://brainly.com/question/2799412
_______________
Let [tex]\mathsf{\theta=sin^{-1}(x)\qquad\qquad-\dfrac{\pi}{2}\ \textless \ \theta\ \textless \ \dfrac{\pi}{2}.}[/tex]
(that is the range of the inverse sine function).
So,
[tex]\mathsf{sin\,\theta=sin\!\left[sin^{-1}(x)\right]}\\\\ \mathsf{sin\,\theta=x\qquad\quad(i)}[/tex]
Square both sides:
[tex]\mathsf{sin^2\,\theta=x^2\qquad\qquad(but~sin^2\,\theta=1-cos^2\,\theta)}\\\\ \mathsf{1-cos^2\,\theta=x^2}\\\\ \mathsf{1-x^2=cos^2\,\theta}\\\\ \mathsf{cos^2\,\theta=1-x^2}[/tex]
Since [tex]\mathsf{-\,\dfrac{\pi}{2}\ \textless \ \theta\ \textless \ \dfrac{\pi}{2},}[/tex] then [tex]\mathsf{cos\,\theta}[/tex] is positive. So take the positive square root and you get
[tex]\mathsf{cos\,\theta=\sqrt{1-x^2}\qquad\quad(ii)}[/tex]
Then,
[tex]\mathsf{tan\,\theta=\dfrac{sin\,\theta}{cos\,\theta}}\\\\\\ \mathsf{tan\,\theta=\dfrac{x}{\sqrt{1-x^2}}}\\\\\\\\ \therefore~~\mathsf{tan\!\left[sin^{-1}(x)\right]=\dfrac{x}{\sqrt{1-x^2}}\qquad\qquad -1\ \textless \ x\ \textless \ 1.}[/tex]
I hope this helps. =)
Tags: inverse trigonometric function sin tan arcsin trigonometry
_______________
Let [tex]\mathsf{\theta=sin^{-1}(x)\qquad\qquad-\dfrac{\pi}{2}\ \textless \ \theta\ \textless \ \dfrac{\pi}{2}.}[/tex]
(that is the range of the inverse sine function).
So,
[tex]\mathsf{sin\,\theta=sin\!\left[sin^{-1}(x)\right]}\\\\ \mathsf{sin\,\theta=x\qquad\quad(i)}[/tex]
Square both sides:
[tex]\mathsf{sin^2\,\theta=x^2\qquad\qquad(but~sin^2\,\theta=1-cos^2\,\theta)}\\\\ \mathsf{1-cos^2\,\theta=x^2}\\\\ \mathsf{1-x^2=cos^2\,\theta}\\\\ \mathsf{cos^2\,\theta=1-x^2}[/tex]
Since [tex]\mathsf{-\,\dfrac{\pi}{2}\ \textless \ \theta\ \textless \ \dfrac{\pi}{2},}[/tex] then [tex]\mathsf{cos\,\theta}[/tex] is positive. So take the positive square root and you get
[tex]\mathsf{cos\,\theta=\sqrt{1-x^2}\qquad\quad(ii)}[/tex]
Then,
[tex]\mathsf{tan\,\theta=\dfrac{sin\,\theta}{cos\,\theta}}\\\\\\ \mathsf{tan\,\theta=\dfrac{x}{\sqrt{1-x^2}}}\\\\\\\\ \therefore~~\mathsf{tan\!\left[sin^{-1}(x)\right]=\dfrac{x}{\sqrt{1-x^2}}\qquad\qquad -1\ \textless \ x\ \textless \ 1.}[/tex]
I hope this helps. =)
Tags: inverse trigonometric function sin tan arcsin trigonometry