Respuesta :

(i) The Maclaurin's series is:

1 ₊ x ₊ x²/2! . 1 ₋ 3x⁴/4! ₊ ...........

(ii) Integral of limit o to 1∫ e^sinx is 0

Maclaurin's expansion is as follows:

y(x) = y₀ ₊ x y₁(0) ₊ x²/2! y₂(0) ₊ x³/3! y₃(0) ₊ ........

y = e^sinx

y(0) = e^sin0

y(0) = 1

Differentiate y with respect to x

y₁(x) = e^sinx . cos x

y₁(0) = 1 [i.e y₁ = cosx.y]

y₁(0) = 1

Differentiate y₁ with respect to x

y₂(x) = cosc . y₁ ₋ sinx . y

∴ y₂(0) = 1 ₋ 0 = 1

Differentiate y₂ with respect to x

y₃ = cosx . y₂ ₋ (2 sinx ₊ cosx)y₁

y₃(0) = 1 ₋(0 ₊ 1)1

y₃(0) = 0

Differentiate y₃ with respect to x

y₄ = cosx . y₃ sinx . y₃ ₋ (2sinx ₊ cosx)y₂ ₋ (2cos x ₋ sinx) y₁

y₄(0) = 0 ₋ (3 . 0 ₊ 1)1 ₋ (2 ₋ o) 1

y₄(0) = -3

∴ From maclaurin's equation we get:

e^sinx = 1 ₊ x . 1 ₊ x²/2! . 1 ₊ x³/3! (0) ₊ x⁴/4! (₋3) ₊ ....

           =1 ₊ x ₊ x²/2! . 1 ₋ 3x⁴/4! ₊ ...........

Hence we get the the series expansion as 1 ₊ x ₊ x²/2! . 1 ₋ 3x⁴/4! ₊ ...........

(ii) limit 0 to 1∫e^sinx

integration formula ∫e^x dx = e^x + c

                    limit 0 to 1 ∫e^sinx = [e^sinx + c ]limit 0 to 1

                                                 = e^sin0 ₋ e^sin1

                                                 = 1 ₋ 1

                                                 = 0

Hence we get the answer as 0

Learn more about "Integration" here-

https://brainly.com/question/22008756

#SPJ10