Respuesta :
[tex]\quad \huge \quad \quad \boxed{ \tt \:Answer }[/tex]
[tex]\qquad \tt \rightarrow \:Angle \:\: of \:\: elevation= 30° [/tex]
____________________________________
[tex] \large \tt Solution \: : [/tex]
Let the angle of elevation be " x "
[tex]\qquad \tt \rightarrow \: \cos(x) = \dfrac{9 \sqrt{3} }{18} [/tex]
[tex]\qquad \tt \rightarrow \: \cos(x) = \dfrac{ \sqrt{3} }{2} [/tex]
[tex]\qquad \tt \rightarrow \: x = \cos {}^{ - 1} \bigg( \cfrac{ \sqrt{3} }{2} \bigg ) [/tex]
[tex]\qquad \tt \rightarrow \: x = 30 \degree \: \: or \: \: \cfrac{ \pi}{6} \: \: rad[/tex]
Answered by : ❝ AǫᴜᴀWɪᴢ ❞
Answer:
The angle is 60 degree.
Step-by-step explanation:
First of all, we will find the height if the tree by using Pythagorean theorm.
Let, height of tree be x.
18^2=(9(3^1/2))^2+x^2
324=243+x^2
x^2=324-243
x^2=81
x=9
Now, let the angle be y.
tan y= x/base
tan y=9/9×(3^1/2)
tan y=1.73
y=cot 1.73
y= 60