Respuesta :
Answer:
[tex]52\sqrt{3} ft^{2}[/tex]
Step-by-step explanation:
Please refer to the attached picture.
First we will find the area of rectangle BCDE.
Area of Rectangle = Length x Breadth = DE x CD
= 11 x [tex]4\sqrt{3}[/tex]
[tex]=44\sqrt{3} ft^{2}[/tex]
Next we will find Area of Triangle ABE.
Area of Triangle = 0.5 x Base x Height
[tex]0.5*4*4\sqrt{3} \\=8\sqrt{3} ft^{2}[/tex]
Area of Trapezoid = Area of Rectangle + Area of Triangle
[tex]=44\sqrt{3} +8\sqrt{3} \\=52\sqrt{3} ft^{2}[/tex]
Answer:
A = 52[tex]\sqrt{3}[/tex] ft² ≈ 90.1 ft²
Step-by-step explanation:
the area (A) of a trapezoid is calculated as
A = [tex]\frac{1}{2}[/tex] h (b₁ + b₂ )
where h is the perpendicular height and b₁ , b₂ the parallel bases
here h = 4[tex]\sqrt{3}[/tex] , b₁ = 15 , b₂ = 11 , then
A = [tex]\frac{1}{2}[/tex] × 4[tex]\sqrt{3}[/tex] × (15 + 11)
= 2[tex]\sqrt{3}[/tex] × 26
= 52[tex]\sqrt{3}[/tex] ft²
≈ 90.1 ft² ( to the nearest tenth )