Respuesta :
Step-by-step explanation:
Step 1: Setting Up the Factors
Our roots are 3, 2, and -4 so
our factors are
[tex](x - 3)(x - 2)(x + 4)[/tex]
Step 2: Initial Test to see if the result equal 30
Let a be a constant, such we have
[tex]a(x - 3)(x - 2)(x + 4) = 30[/tex]
Plug in. 1 for x.
[tex]a(1 - 3)(1 - 2)(1 + 4) = 30[/tex]
[tex]a( - 2)( - 1)(5) = 30[/tex]
[tex]a(10) = 30[/tex]
[tex]a = 3[/tex]
So our equation is
[tex]3(x - 3)(x - 2)(x + 4)[/tex]
Or if you want it simplifed
[tex]3( {x}^{2} - 5x + 6)(x + 4) = 3( {x}^{3} + - {x}^{2} - 14x + 24) = 3 {x}^{3} - 3 {x}^{2} - 42x + 72[/tex]
Answer:
[tex]f(x)=3(x-3)(x-2)(x+4)[/tex]
Step-by-step explanation:
General form of a cubic polynomial function with 3 roots:
[tex]f(x)=a(x-b)(x-c)(x-d)[/tex]
where:
- a is some constant to be found
- b, c and d are the roots of the function
Given roots:
- (3, 0)
- (2, 0)
- (-4, 0)
Substitute the given roots into the general form of the function:
[tex]\implies f(x)=a(x-3)(x-2)(x-(-4))[/tex]
[tex]\implies f(x)=a(x-3)(x-2)(x+4)[/tex]
To find the value of a, substitute the given point (1, 30) into the equation:
[tex]\begin{aligned} f(1) & = 30\\\implies a(1-3)(1-2)(1+4) & =30\\a(-2)(-1)(5) & = 30 \\10a & = 30\\\implies a & = 3 \end{aligned}[/tex]
Therefore, the equation of the cubic polynomial function is:
[tex]f(x)=3(x-3)(x-2)(x+4)[/tex]
Learn more about polynomials here:
https://brainly.com/question/27953978