Answer:
[tex]\fbox {See below} \downarrow[/tex]
Step-by-step explanation:
Question 1 :
[tex]\mathsf {\frac{dy}{dx} = \frac{d}{dx}(4x^{3})}[/tex]
[tex]\mathsf {\frac{dy}{dx} = 4(3)x^{3-1}}[/tex]
[tex]\mathsf {\frac{dy}{dx} = 12x^{2}}[/tex]
Question 2 :
[tex]\mathsf {\frac{dy}{dx} = \frac{d}{dx}(\frac{2}{x^{4}})}[/tex]
[tex]\mathsf {\frac{dy}{dx} = \frac{d}{dx}(2x^{-4})}[/tex]
[tex]\mathsf {\frac{dy}{dx} = 2(-4)x^{-4-1}}[/tex]
[tex]\mathsf {\frac{dy}{dx} = -8x^{-5}}[/tex]
[tex]\mathsf {\frac{dy}{dx} = -\frac{8}{x^{5}}}[/tex]
Question 3 :
[tex]\mathsf {\frac{dy}{dx} = \frac{d}{dx}(3\sqrt{x})}[/tex]
[tex]\mathsf {\frac{dy}{dx} = \frac{d}{dx}(3(x)^{\frac{1}{2}})}[/tex]
[tex]\mathsf {\frac{dy}{dx} = 3(\frac{1}{2})x^{\frac{1}{2}-1}}[/tex]
[tex]\mathsf {\frac{dy}{dx} = \frac{3}{2}x^{-\frac{1}{2}}}[/tex]
[tex]\mathsf {\frac{dy}{dx} = \frac{3}{2\sqrt{x}}}[/tex]
Question 4 :
[tex]\mathsf {\frac{dy}{dx} = \frac{d}{dx}(\frac{3}{\sqrt{x}})}[/tex]
[tex]\mathsf {\frac{dy}{dx} = \frac{d}{dx}(3x^{-\frac{1}{2}})}[/tex]
[tex]\mathsf {\frac{dy}{dx} = 3(-\frac{1}{2})x^{-\frac{1}{2}-1}}[/tex]
[tex]\mathsf {\frac{dy}{dx} = -\frac{3}{2}x^{-\frac{3}{2}}}[/tex]
[tex]\mathsf {\frac{dy}{dx} = -\frac{3}{2x\sqrt{x}}}[/tex]
Question 5 :
[tex]\mathsf {\frac{dy}{dx} = \frac{d}{dx}(\frac{x^{3}}{4})}[/tex]
[tex]\mathsf {\frac{dy}{dx} = \frac{1}{4}(3)x^{3-1}}[/tex]
[tex]\mathsf {\frac{dy}{dx} = \frac{3}{4}x^{2}}[/tex]
Question 6 :
[tex]\mathsf {\frac{dy}{dx} = \frac{d}{dx}(3x^{5})}[/tex]
[tex]\mathsf {\frac{dy}{dx} = 3(5)x^{5-1}}[/tex]
[tex]\mathsf {\frac{dy}{dx} = 15x^{4}}[/tex]