Respuesta :
Answer:
y = 4
Step-by-step explanation:
1) Simplify [tex]3^5[/tex] to 243.
[tex]{9}^{y}=\frac{243\times {9}^{6}}{{27}^{3}}[/tex]
2) Simplify [tex]{9}^{6}[/tex] to 531441.
[tex]{9}^{y}=\frac{243\times 531441}{{27}^{3}}[/tex]
3) Simplify [tex]243\times 531441[/tex] to 129140163.
[tex]{9}^{y}=\frac{129140163}{{27}^{3}}[/tex]
4) Simplify [tex]{27}^{3}[/tex] to 19683.
[tex]{9}^{y}=\frac{129140163}{19683}[/tex]
5) Simplify [tex]\frac{129140163}{19683}[/tex] to 6561.
[tex]{9}^{y}=6561[/tex]
6) Convert both sides to the same base.
[tex]9^y=9^4[/tex]
7) Cancel the base of 9 on both sides.
[tex]y=4[/tex]
Cheers,
ROR
Answer:
y = 4
Step-by-step explanation:
Decompose in base 3
[tex]9^{y} =\frac{3^{5} (3^{2})^{6} }{(3^{3})^{3} } =\frac{3^{5}3^{12} }{3^{9} } =\frac{3^{17} }{3^{9} } =3^{17-9} =3^{8}[/tex]
if
[tex]3^{8} =(3^{2} )^{4} =9^{4}[/tex]
then
[tex]9^{y} =9^{4}[/tex]
[tex]y=4[/tex]
Hope this helps