Solve the following compound inequality: (1 point)
-2(x+8) +6 > x-4 or -3x + 12 < 6(x-4)
0x<2 orx>4
Ox>2 orx<4
0x<-2 orx>4
Ox>-2 orx<44

Respuesta :

[tex]\quad \huge \quad \quad \boxed{ \tt \:Answer }[/tex]

[tex]\qquad \tt \rightarrow \: x < -2 \:\: or \:\; x >4[/tex]

____________________________________

[tex] \large \tt Solution \: : [/tex]

[tex] \textsf{First Inequality :} [/tex]

[tex]\qquad \tt \rightarrow \: - 2(x + 8) + 6 > x - 4[/tex]

[tex]\qquad \tt \rightarrow \: - 2x - 16 + 6 > x - 4[/tex]

[tex]\qquad \tt \rightarrow \: - 2x - 10 > x - 4[/tex]

[tex]\qquad \tt \rightarrow \: - 10 + 4 > x + 2x[/tex]

[tex]\qquad \tt \rightarrow \: - 6 > 3x[/tex]

[tex]\qquad \tt \rightarrow \: - \cfrac{ 6}{3} > x[/tex]

[tex]\qquad \tt \rightarrow \: - 2 > x[/tex]

[tex]\qquad \tt \rightarrow \: \therefore x < - 2[/tex]

[tex] \textsf{Second Inequality :} [/tex]

[tex]\qquad \tt \rightarrow \: - 3x + 12 < 6(x - 4)[/tex]

[tex]\qquad \tt \rightarrow \: - 3x + 12 < 6x - 24[/tex]

[tex]\qquad \tt \rightarrow \: 12 + 24 < 6x + 3x[/tex]

[tex]\qquad \tt \rightarrow \: 36 < 9x[/tex]

[tex]\qquad \tt \rightarrow \: \cfrac{36}{9} < x[/tex]

[tex]\qquad \tt \rightarrow \: 4 < x[/tex]

[tex]\qquad \tt \rightarrow \: \therefore x > 4[/tex]

Answered by : ❝ AǫᴜᴀWɪᴢ ❞