Respuesta :

[tex]\quad \huge \quad \quad \boxed{ \tt \:Answer }[/tex]

[tex]\qquad \tt \rightarrow \: x = 3[/tex]

____________________________________

[tex] \large \tt Solution \: : [/tex]

[tex]\qquad \tt \rightarrow \: log_{2}(x - 1) log_{2}(x + 5) = 4[/tex]

[tex]\qquad \tt \rightarrow \: log_{2} \{(x - 1)(x + 5) \} = 4[/tex]

[ log (x) + log (y) = log (xy) ]

[tex]\qquad \tt \rightarrow \: ( x - 1)(x + 5) = {2}^{4} [/tex]

[tex]\qquad \tt \rightarrow \: {x}^{2} + 5x - x - 5 = 16[/tex]

[tex]\qquad \tt \rightarrow \: {x}^{2} + 4x - 5 - 16 = 0[/tex]

[tex]\qquad \tt \rightarrow \: {x}^{2} + 4x -21 = 0[/tex]

[tex]\qquad \tt \rightarrow \: {x}^{2} + 7x - 3x - 21 = 0[/tex]

[tex]\qquad \tt \rightarrow \: x(x + 7) - 3(x + 7) = 0[/tex]

[tex]\qquad \tt \rightarrow \: (x + 7)(x - 3) = 0[/tex]

[tex]\qquad \tt \rightarrow \: x = - 7 \: \: or \: \: x = 3[/tex]

The only possible value of x is 3, since we can't operate logarithm with a negative integer in it.

[tex]\qquad \tt \rightarrow \: x = 3[/tex]

Answered by : ❝ AǫᴜᴀWɪᴢ ❞