The expression that is equivalent to the given expression is [tex]3\sqrt[6]{z}[/tex]
From the question, we are to determine which of the expressions is equivalent to the given expression
The given expression is
[tex]6\sqrt{z} \div \sqrt[3]{8z}[/tex]
The expression can be simplified as
[tex]6\sqrt{z} \div \sqrt[3]{8z}[/tex]
[tex]\frac{6\sqrt{z}}{\sqrt[3]{8z}}[/tex]
[tex]= \frac{6 \times \sqrt{z}}{\sqrt[3]{8} \times \sqrt[3]{z}}[/tex]
[tex]= \frac{6 \times z^{\frac{1}{2} } }{2 \times z^{\frac{1}{3} }}[/tex]
[tex]= 3\times z^{\frac{1}{2} -\frac{1}{3}}[/tex]
[tex]= 3\times z^{\frac{1}{6}}[/tex]
[tex]= 3\times\sqrt[6]{z}[/tex]
[tex]= 3\sqrt[6]{z}[/tex]
Hence, the expression that is equivalent to the given expression is [tex]3\sqrt[6]{z}[/tex]
Learn more on Simplifying an expression here: https://brainly.com/question/10864685
#SPJ1