Respuesta :

Answer:

[tex]y=-\dfrac{1}{2}x+2[/tex]

Step-by-step explanation:

Define two points on the line:

  [tex]\textsf{let}\:(x_1,y_1)=(0,2)[/tex]

  [tex]\textsf{let}\:(x_2,y_2)=(4,0)[/tex]

Use the slope formula and the defined points to find the slope:

[tex]\implies \textsf{slope}\:(m)=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{0-2}{4-0}=-\dfrac{1}{2}[/tex]

Substitute the found slope and one of the points into the point-slope form of a linear equation:

[tex]\implies y-y_1=m(x-x_1)[/tex]

[tex]\implies y-2=-\dfrac{1}{2}(x-0)[/tex]

Simplify:

[tex]\implies y-2=-\dfrac{1}{2}x[/tex]

[tex]\implies y=-\dfrac{1}{2}x+2[/tex]