The quotient [tex]x^5 - 3x^3 - 3x^2 - 10x + 15 \div x^2 - 5[/tex] is [tex]x^3 + 2x - 3[/tex]
The quotient can be represented as:
[tex]x^5 - 3x^3 - 3x^2 - 10x + 15 \div x^2 - 5[/tex]
Start by expanding the dividend
[tex]x^5 + 2x^3 - 5x^3 - 3x^2 - 10x + 15 \div x^2 - 5[/tex]
Rewrite as:
[tex]x^5 + 2x^3 - 3x^2 - 5x^3 - 10x + 15 \div x^2 - 5[/tex]
Factorize the dividend
[tex]x^2(x^3 + 2x - 3) - 5(x^3 + 2x - 3) \div x^2 - 5[/tex]
Factor out x^3 + 2x - 3
[tex](x^2- 5)(x^3 + 2x - 3) \div x^2 - 5[/tex]
Cancel out the common factor
[tex]x^3 + 2x - 3[/tex]
Hence, the quotient [tex]x^5 - 3x^3 - 3x^2 - 10x + 15 \div x^2 - 5[/tex] is [tex]x^3 + 2x - 3[/tex]
Read more about polynomials at:
https://brainly.com/question/1498111
#SPJ1