Respuesta :
Proved Below
[tex]\Longrightarrow x-y = \sqrt{(x+y)^2-4xy}[/tex]
[tex]\Longrightarrow x-y = \sqrt{x^2+2(x)(y)+ y^2-4xy}[/tex]
[tex]\Longrightarrow x-y = \sqrt{x^2+2xy-4xy+y^2}[/tex]
[tex]\Longrightarrow x-y = \sqrt{x^2-2xy+y^2}[/tex]
[tex]\Longrightarrow x-y = \sqrt{(x-y)^2}[/tex]
[tex]\Longrightarrow x-y =x-y[/tex]
Let's check
x-y=√(x+y)²-4xy
Solve RHS
- √(x+y)²-4xy
- √x²+2xy+y²-4xy
- √x²+y²-2xy
- √(x-y)²
- x-y
Hence proved