Respuesta :
Disclaimer: I ended up finding what's asked for in the reverse order (e)-(a).
At time [tex]t[/tex], the horizontal position [tex]x[/tex] and vertical position [tex]y[/tex] of the ball are given respectively by
[tex]x = v_i \cos(\theta_i) t[/tex]
[tex]y = v_i \sin(\theta_i) t - \dfrac g2 t^2[/tex]
and the horizontal velocity [tex]v_x[/tex] and vertical velocity [tex]v_y[/tex] are
[tex]v_x = v_i \cos(\theta_i)[/tex]
[tex]v_y = v_i \sin(\theta_i) - gt[/tex]
The ball reaches its maximum height with [tex]v_y=0[/tex]. At this point, the ball has zero vertical velocity. This happens when
[tex]v_i \sin(\theta_i) - gt = 0 \implies t = \dfrac{v_i \sin(\theta_i)}g[/tex]
which means
[tex]y = \dfrac R6 = v_i \sin(\theta_i) \times \dfrac{v_i \sin(\theta_i)}g - \dfrac g2 \left(\dfrac{v_i \sin(\theta_i)}g\right)^2 \\\\ \implies R = \dfrac{6{v_i}^2 \sin^2(\theta_i)}g - \dfrac{3{v_i}^2 \sin^2(\theta_i)}g \\\\ \implies R = \dfrac{3{v_i}^2 \sin^2(\theta_i)}g[/tex]
At the same time, the ball will have traveled half its horizontal range, so
[tex]x = \dfrac R2 = v_i \cos(\theta_i) \times \dfrac{v_i \sin(\theta_i)}g \\\\ \implies R = \dfrac{2{v_i}^2 \cos(\theta_i) \sin(\theta_i)}g[/tex]
Solve for [tex]v_i[/tex] and [tex]\theta_i[/tex] :
[tex]\dfrac{3{v_i}^2 \sin^2(\theta_i)}g = \dfrac{2{v_i}^2 \cos(\theta_i) \sin(\theta_i)}g \\\\ \implies 3 \sin^2(\theta_i) = 2 \cos(\theta_i) \sin(\theta_i) \\\\ \sin(\theta_i) (3\sin(\theta_i) - 2 \cos(\theta_i)) = 0[/tex]
Since [tex]0^\circ<\theta_i<90^\circ[/tex], we cannot have [tex]\sin(\theta_i)=0[/tex], so we're left with (e)
[tex]3 \sin(\theta_i) - 2\cos(\theta_i) = 0 \\\\ \implies 3 \sin(\theta_i) = 2\cos(\theta_i) \\\\ \implies \tan(\theta_i) = \dfrac23 \\\\ \implies \boxed{\theta_i = \tan^{-1}\left(\dfrac23\right) \approx 33.7^\circ}[/tex]
Now,
[tex]\cos\left(\tan^{-1}\left(\dfrac23\right)\right) = \dfrac3{\sqrt{13}}[/tex]
[tex]\sin\left(\tan^{-1}\left(\dfrac23\right)\right) = \dfrac2{\sqrt{13}}[/tex]
so it follows that (d)
[tex]R = \dfrac{2{v_i}^2 \times\frac3{\sqrt{13}} \times \frac2{\sqrt{13}}}g \\\\ \implies {v_i}^2 = \dfrac{13Rg}{12} \\\\ \implies \boxed{v_i = \sqrt{\dfrac{13Rg}{12}}}[/tex]
Knowing the initial speed and angle, the initial vertical component of velocity is (c)
[tex]v_y = \sqrt{\dfrac{13Rg}{12}} \sin\left(\tan^{-1}\left(\dfrac23\right)\right) \\\\ \implies v_y = \sqrt{\dfrac{13Rg}{12}} \times \dfrac2{\sqrt{13}} \\\\ \implies \boxed{v_y = \sqrt{\dfrac{Rg}3}}[/tex]
We mentioned earlier that the vertical velocity is zero at maximum height, so the speed of the ball is entirely determined by the horizontal component. (b)
[tex]v_x = \sqrt{\dfrac{13Rg}{12}} \times \dfrac3{\sqrt{13}} \\\\ \implies v_x = \dfrac{\sqrt{3Rg}}{2}[/tex]
Then with [tex]v_y=0[/tex], the ball's speed [tex]v[/tex] is
[tex]v = \sqrt{{v_x}^2 + {v_y}^2} \\\\ \implies v = v_x \\\\ \implies \boxed{v = \dfrac{\sqrt{3Rg}}2}[/tex]
Finally, in the work leading up to part (e), we showed the time to maximum height is
[tex]t = \dfrac{v_i \sin(\theta_i)}g[/tex]
but this is just half the total time the ball spends in the air. The total airtime is then
[tex]2t = \dfrac{2 \times \sqrt{\frac{13Rg}{12}} \times \frac2{\sqrt{13}}}g \\\\ \implies 2t = 2\sqrt{\dfrac R{3g}}[/tex]
and the ball is in the air over the interval (a)
[tex]\boxed{0 < t < 2\sqrt{\frac R{3g}}}[/tex]