Respuesta :

Answer:

[tex]x=1[/tex]

Step-by-step explanation:

Given equation:

[tex]2 \ln 4+\ln x=3 \ln 2+\ln(x+1)[/tex]

[tex]\textsf{Apply the power law}: \quad n \ln x = \ln x^n[/tex]

[tex]\implies \ln 4^2+\ln x=\ln 2^3+\ln(x+1)[/tex]

Simplify:

[tex]\implies \ln 16+\ln x=\ln 8+\ln(x+1)[/tex]

Subtract ln 8 from both sides:

[tex]\implies \ln 16+\ln x- \ln 8=\ln(x+1)[/tex]

Subtract ln x from both sides:

[tex]\implies \ln 16-\ln 8=\ln(x+1)-\ln x[/tex]

[tex]\textsf{Apply the quotient law}: \quad \ln x - \ln y = \ln \frac{x}{y}[/tex]

[tex]\implies \ln \left\dfrac{16}{8}\right = \ln \left(\dfrac{x+1}{x}\right)[/tex]

Simplify:

[tex]\implies \ln 2 = \ln \left(\dfrac{x+1}{x}\right)[/tex]

[tex]\textsf{Apply the equality law}: \quad \textsf{if }\: \ln x= \ln y\:\textsf{ then }\:x=y[/tex]

[tex]\implies 2=\dfrac{x+1}{x}[/tex]

Multiply both sides by x:

[tex]\implies 2x=x+1[/tex]

Subtract x from both sides:

[tex]\implies x=1[/tex]

RELAXING NOICE
Relax