What is the solution to this equation? 2ln4+lnx=3ln2+ln(x+1)

Answer:
[tex]x=1[/tex]
Step-by-step explanation:
Given equation:
[tex]2 \ln 4+\ln x=3 \ln 2+\ln(x+1)[/tex]
[tex]\textsf{Apply the power law}: \quad n \ln x = \ln x^n[/tex]
[tex]\implies \ln 4^2+\ln x=\ln 2^3+\ln(x+1)[/tex]
Simplify:
[tex]\implies \ln 16+\ln x=\ln 8+\ln(x+1)[/tex]
Subtract ln 8 from both sides:
[tex]\implies \ln 16+\ln x- \ln 8=\ln(x+1)[/tex]
Subtract ln x from both sides:
[tex]\implies \ln 16-\ln 8=\ln(x+1)-\ln x[/tex]
[tex]\textsf{Apply the quotient law}: \quad \ln x - \ln y = \ln \frac{x}{y}[/tex]
[tex]\implies \ln \left\dfrac{16}{8}\right = \ln \left(\dfrac{x+1}{x}\right)[/tex]
Simplify:
[tex]\implies \ln 2 = \ln \left(\dfrac{x+1}{x}\right)[/tex]
[tex]\textsf{Apply the equality law}: \quad \textsf{if }\: \ln x= \ln y\:\textsf{ then }\:x=y[/tex]
[tex]\implies 2=\dfrac{x+1}{x}[/tex]
Multiply both sides by x:
[tex]\implies 2x=x+1[/tex]
Subtract x from both sides:
[tex]\implies x=1[/tex]