Respuesta :
7 = 0.5|x-4|- 3 add 3 to both sides: -
0.5|x-4| = 10 divide bs by 0,5:-
|x-4| = 20
either x - 4 = 20 or x - 4 = -20
this gives x = 24, x = -16
0.5|x-4| = 10 divide bs by 0,5:-
|x-4| = 20
either x - 4 = 20 or x - 4 = -20
this gives x = 24, x = -16
we have
[tex]f(x)=0.5\left|x-4\right|-3[/tex] -----> equation A
[tex]f(x)=7[/tex] -----> equation B
equate equation A and equation B
[tex]0.5\left|x-4\right|-3=7[/tex]
Adds [tex]3[/tex] boths sides
[tex]0.5\left|x-4\right|-3+3=7+3[/tex]
[tex]0.5\left|x-4\right|=10[/tex]
Multiply by [tex]2[/tex] boths sides
[tex]\left|x-4\right|=20[/tex]
we know that
The function absolute value has two solutions
Step 1
Find the first solution (positive case)
[tex]+(x-4)=20[/tex]
Adds [tex]4[/tex] boths sides
[tex]x-4+4=20+4[/tex]
[tex]x=24[/tex]
Step 2
Find the second solution (negative case)
[tex]-(x-4)=20[/tex]
Multiply by [tex]-1[/tex] boths sides
[tex](x-4)=-20[/tex]
Adds [tex]4[/tex] boths sides
[tex]x-4+4=-20+4[/tex]
[tex]x=-16[/tex]
therefore
the answer is the option B
[tex]x=-16, x=24[/tex]