Subdivide the interval [0, 3] into 6 subintervals of equal length, ∆x = (3 - 0)/6 = 1/2. Then the partition is
[tex]\left[0,\dfrac12\right] \cup \left[\dfrac12,1\right] \cup \left[1,\dfrac32\right] \cup \cdots \cup \left[\dfrac52,3\right][/tex]
The right endpoint of the [tex]i[/tex]-th subinterval is
[tex]r_i = \dfrac12 + (i-1)\times\dfrac12 = \dfrac i2[/tex]
with [tex]i\in\{1,2,3,\ldots,6\}[/tex].
Then the area under the [tex]y=x^2[/tex] on the interval [0, 3] is approximately
[tex]\displaystyle \int_0^3 x^2 \, dx \approx \sum_{i=1}^6 (r_i)^2 \Delta x = \frac18 \sum_{i=1}^6 i^2[/tex]
Recall that
[tex]\displaystyle \sum_{n=1}^N n^2 = \frac{N(N+1)(2N+1)}6[/tex]
Then the approximate value of the area is
[tex]\displaystyle \int_0^3 x^2 \, dx \approx \frac{6\times7\times13}{48} = \boxed{\frac{91}8}[/tex]
The actual value of the area is 9, so this approximation is an overestimation, as is always the case when using a right endpoint sum for an increasing function.