Respuesta :
Answer:
Approximately [tex]3.14\; {\rm rad \cdot s^{-1}}[/tex].
Explanation:
Fact: the angular velocity [tex]\omega[/tex] of a simple harmonic oscillator is the ratio between the maximum velocity [tex]v_{\text{max}}[/tex] and the maximum displacement [tex]x_\text{max}[/tex] of this oscillator. In other words:
[tex]\begin{aligned} \omega &= \frac{v_{\text{max}}}{x_{\text{max}}}\end{aligned}[/tex].
Derivation of the previous equation:
Let [tex]A[/tex] denote the amplitude of this oscillation, and let [tex]\omega[/tex] denote the angular velocity.
The displacement of the oscillator at time [tex]t[/tex] would be:
[tex]x(t) = A\, \sin(\omega\, t)[/tex].
The maximum displacement of this oscillator would be [tex]x_\text{max} = A[/tex].
The velocity of this oscillator at time [tex]t[/tex] is the derivative of displacement with respect to time:
[tex]\begin{aligned} v(t) &= \frac{d}{d t}\, [x(t)] \\ &= \frac{d}{d t} [A\, \sin(\omega\, t)] \\ &= A\, \omega\, \cos(\omega\, t)\end{aligned}[/tex].
The maximum velocity of this oscillator would be [tex]v_\text{max} = A\, \omega[/tex].
Notice that dividing [tex]v_\text{max} = A\, \omega[/tex] by [tex]x_\text{max} = A[/tex] would give:
[tex]\displaystyle \frac{v_\text{max}}{x_\text{max}} = \frac{A\, \omega}{A} = \omega[/tex].
It is given that [tex]v_\text{max} = 2.76\; {\rm m\cdot s^{-1}}[/tex] while [tex]x_\text{max} = 0.0880\; {\rm m}[/tex]. Therefore:
[tex]\begin{aligned} \omega &= \frac{v_{\text{max}}}{x_{\text{max}}} \\ &= \frac{2.76\; {\rm m\cdot s^{-1}}}{0.0880\; {\rm m}} \\ &\approx 3.14\; {\rm s^{-1}}\end{aligned}[/tex].
(Radians per second.)