An inverse in mathematics is a function that "undoes" another function. In other words, if f(x) produces y, then y entered into the inverse of f produces x. An invertible function is one that has an inverse, and the inverse is represented by the symbol [tex]f^{-1}[/tex].
Step wise procedure:
∵f(x) = [tex]4x^{2}*2[/tex]
⇒f(x) = [tex]8x^{2}[/tex]
replace f(x) with y
⇒y = [tex]8x^{2}[/tex]
now, interchange the variables
⇒x = [tex]8y^{2}[/tex]
solve for y
⇒y = [tex]\frac{\sqrt{x} }{2\sqrt{2} }[/tex]
⇒y = - [tex]\frac{\sqrt{x} }{2\sqrt{2} }[/tex]
solve for y and replace with [tex]f^{-}(x)[/tex]
[tex]f^{-}(x)[/tex] = [tex]\frac{\sqrt{x} }{2\sqrt{2} }[/tex] , [tex]-\frac{\sqrt{x} }{2\sqrt{2} }[/tex]
Learn more about Inverse function here https://brainly.com/question/15066392
#SPJ10