Respuesta :

The inverse of [tex]4x^{2} * 2[/tex] are [tex]f^{-}(x) = \frac{\sqrt{x} }{2\sqrt{2} } and - \frac{\sqrt{x} }{2\sqrt{2} }[/tex]

What id an inverse of a function?

An inverse in mathematics is a function that "undoes" another function. In other words, if f(x) produces y, then y entered into the inverse of f produces x. An invertible function is one that has an inverse, and the inverse is represented by the symbol [tex]f^{-1}[/tex].

Step wise procedure:

∵f(x) = [tex]4x^{2}*2[/tex]

⇒f(x) = [tex]8x^{2}[/tex]

replace f(x) with y

⇒y = [tex]8x^{2}[/tex]

now, interchange the variables

⇒x = [tex]8y^{2}[/tex]

solve for y

⇒y = [tex]\frac{\sqrt{x} }{2\sqrt{2} }[/tex]

⇒y = - [tex]\frac{\sqrt{x} }{2\sqrt{2} }[/tex]

solve for y and replace with [tex]f^{-}(x)[/tex]

[tex]f^{-}(x)[/tex] = [tex]\frac{\sqrt{x} }{2\sqrt{2} }[/tex] , [tex]-\frac{\sqrt{x} }{2\sqrt{2} }[/tex]

Learn more about Inverse function here https://brainly.com/question/15066392

#SPJ10

RELAXING NOICE
Relax