Respuesta :
Answer:
[tex]\rm slope: -\dfrac{7}{6}[/tex]
[tex]\rm Distance: 2\sqrt{85} \ units[/tex]
Part A
[tex]\sf slope: \dfrac{y_2 - y_1}{x_2- x_1} = \dfrac{\triangle y }{\triangle x} \ \ where \ (x_1 , \ y_1), ( x_2 , \ y_2) \ are \ points[/tex]
Here given points are: (6, -6), (-6, 8)
Insert the values:
[tex]\sf \rightarrow slope: \dfrac{8-(-6)}{-6-6}[/tex]
[tex]\sf \rightarrow slope: \dfrac{8+ 6}{-12}[/tex]
[tex]\sf \rightarrow slope: \dfrac{14}{-12}[/tex]
[tex]\sf \rightarrow slope: -\dfrac{7}{6}[/tex]
Part B
[tex]\sf Distance \ between \ points : \sf d = \sqrt{(x_2 - x_1)^2 + (y_2-y_1)^2}[/tex]
Using the formula,
[tex]\sf d = \sqrt{(-6 - 6)^2 + (8-(-6))^2}[/tex]
[tex]\sf d = \sqrt{(-12)^2 + (14)^2}[/tex]
[tex]\sf d = \sqrt{144 +196}[/tex]
[tex]\sf d = \sqrt{340}[/tex]
[tex]\sf d = \sqrt{85 \times 4}[/tex]
[tex]\sf d = 2\sqrt{85}[/tex]
Hence, the distance is 2√85 units.
Hii!
___________________________________________________________
[tex]\stackrel\bigstar{\rightsquigarrow\circ\boldsymbol{\underbrace{Answer}\circ\leftharpoonup}}[/tex]
Slope =
Distance =
[tex]\stackrel\bigstar{\rightsquigarrow\circ\boldsymbol{\underbrace{Explanation}\circ\leftharpoonup}}[/tex]
[tex]\bullet[/tex] Let's work out the slope
[tex]\twoheadrightarrow\sf \cfrac{y2-y1}{x2-x1}[/tex]
[tex]\bullet[/tex] Stickin the values
[tex]\twoheadrightarrow\sf \cfrac{8-(-6)}{-6-6}[/tex]
[tex]\bullet[/tex] Simplify
[tex]\twoheadrightarrow\sf \cfrac{8+6}{-12}[/tex]
[tex]\bullet[/tex] Finish simplifying
[tex]\twoheadrightarrow\sf \cfrac{14}{-12}[/tex]
[tex]\bullet[/tex] Reduce the fraction
[tex]\twoheadrightarrow\sf \cfrac{7}{-6}[/tex]
____________________________________
[tex]\bullet[/tex] Work out the distance
[tex]\twoheadrightarrow\sf \sqrt{(x2-x1)^2+(y2-y1)^2}[/tex]
[tex]\bullet[/tex] Stick in the values
[tex]\twoheadrightarrow\sf \sqrt{(-6-6)^2+(8-(-6)^2}[/tex]
[tex]\bullet[/tex] Simplify the radical expression
[tex]\twoheadrightarrow\sf \sqrt{(-12)^2+14^2}\\\\\twoheadrightarrow\sf \sqrt{144+169} \\\\\twoheadrightarrow\sf \sqrt{340}\\\\\twoheadrightarrow\sf \sqrt{85\cdot4} \quad (simplifying\,the\,surd)[/tex]
[tex]\ddagger[/tex] [tex]\boldsymbol{DISTANCE=2\sqrt{85} \,Units}[/tex] [tex]\ddagger[/tex]
--
Hope that this helped! Best wishes.
--
