Respuesta :

✠ Given:-

  • Radius of the Sphere = 4 cm

✠ To Find:-

  • Area of the Sphere = ??

✠ Solution:-

Here , we Have Given That Radius of the Sphere is 4 cm and we have to find the Area of the Sphere , We know that formula used to find the area; Area of Sphere = 4πr².....

Calculating the Area of the Sphere;

[tex] \\ \sf \implies \: Area_{ \red{ \{Sphere \}}} \: = \: \: 4 \: \pi \: r {}^{2} \\ [/tex]

[tex] \\ \sf \implies \: Area_{ \red{ \{Sphere \}}} \: = \: \: 4 \: \times \: \frac{22}{7} \: \times \: 4 {} \: ^{2} \\ [/tex]

[tex] \\ \sf \implies \: Area_{ \red{ \{Sphere \}}} \: = \: \: 4 \: \times \: \frac{22}{7} \: \times \: 4 \: \times \:4 \\ [/tex]

[tex] \\ \sf \implies \: Area_{ \red{ \{Sphere \}}} \: = \: \: 4 \: \times \: \frac{22}{7} \: \times \: 16 \\ [/tex]

[tex] \\ \sf \implies \: Area_{ \red{ \{Sphere \}}} \: = \:\: \frac{4 \: \times \: 22 \: \times \: 16 \: }{7} \: \\ [/tex]

[tex] \\ \sf \implies \: Area_{ \red{ \{Sphere \}}} \: = \:\: \frac{ \: \: 1408\: \: \: }{7} \: \\ [/tex]

[tex] \\ \sf \implies \: Area_{ \red{ \{Sphere \}}} \: = \:\: \cancel{\frac{ \: \: 1408\: \: \: }{7} } \: \\ [/tex]

[tex] \\ \implies{ \underline{ \boxed{\sf{ \: Area_{ \red{ \{Sphere \}}} \: = 201.14 \: \: cm }}}}\\ \\ [/tex]

Henceforth, The Area of Sphere is 201.14 cm...!!

[tex] \\ \\ ✠ \: \: { \underline{\bf { \color{blue}{ \: \: Additional \: \: Information :- \: \: }}}} \\ \\ [/tex]

⇥ Perimeter of rectangle = 2(length× breadth)

⇥ Diagonal of rectangle = √(length ²+breadth ²)

⇥ Area of square = side²

⇥ Perimeter of square = 4× side

⇥ Volume of cylinder = πr²h

⇥ T.S.A of cylinder = 2πrh + 2πr²

⇥ Volume of cone = ⅓ πr²h

⇥ C.S.A of cone = πrl

⇥ T.S.A of cone = πrl + πr²

⇥ Volume of cuboid = l × b × h

⇥ C.S.A of cuboid = 2(l + b)h

⇥ T.S.A of cuboid = 2(lb + bh + lh)

⇥ C.S.A of cube = 4a²

⇥ T.S.A of cube = 6a²

⇥ Volume of cube = a³

⇥ Volume of sphere = 4/3πr³

⇥ Surface area of sphere = 4πr²

⇥ Volume of hemisphere = ⅔ πr³

⇥ C.S.A of hemisphere = 2πr²

⇥ T.S.A of hemisphere = 3πr²

Answer: 201.14 cm^2

Step-by-Step Solution:

Radius (r) = 4 cm

Area of the Sphere = 4πr^2

Therefore,
= 4πr^2
= 4 * π * r * r
= 4 * 22/7 * 4 * 4
= 4 * 22/7 * 16
= 88/7 * 16
= 1408/7
=> 201.14

Area of the Sphere = 201.14 cm^2
RELAXING NOICE
Relax