Respuesta :
✠ Given:-
- Radius of the Sphere = 4 cm
✠ To Find:-
- Area of the Sphere = ??
✠ Solution:-
⚘ Here , we Have Given That Radius of the Sphere is 4 cm and we have to find the Area of the Sphere , We know that formula used to find the area; Area of Sphere = 4πr².....
☼ Calculating the Area of the Sphere;
[tex] \\ \sf \implies \: Area_{ \red{ \{Sphere \}}} \: = \: \: 4 \: \pi \: r {}^{2} \\ [/tex]
[tex] \\ \sf \implies \: Area_{ \red{ \{Sphere \}}} \: = \: \: 4 \: \times \: \frac{22}{7} \: \times \: 4 {} \: ^{2} \\ [/tex]
[tex] \\ \sf \implies \: Area_{ \red{ \{Sphere \}}} \: = \: \: 4 \: \times \: \frac{22}{7} \: \times \: 4 \: \times \:4 \\ [/tex]
[tex] \\ \sf \implies \: Area_{ \red{ \{Sphere \}}} \: = \: \: 4 \: \times \: \frac{22}{7} \: \times \: 16 \\ [/tex]
[tex] \\ \sf \implies \: Area_{ \red{ \{Sphere \}}} \: = \:\: \frac{4 \: \times \: 22 \: \times \: 16 \: }{7} \: \\ [/tex]
[tex] \\ \sf \implies \: Area_{ \red{ \{Sphere \}}} \: = \:\: \frac{ \: \: 1408\: \: \: }{7} \: \\ [/tex]
[tex] \\ \sf \implies \: Area_{ \red{ \{Sphere \}}} \: = \:\: \cancel{\frac{ \: \: 1408\: \: \: }{7} } \: \\ [/tex]
[tex] \\ \implies{ \underline{ \boxed{\sf{ \: Area_{ \red{ \{Sphere \}}} \: = 201.14 \: \: cm }}}}\\ \\ [/tex]
Henceforth, The Area of Sphere is 201.14 cm...!!
[tex] \\ \\ ✠ \: \: { \underline{\bf { \color{blue}{ \: \: Additional \: \: Information :- \: \: }}}} \\ \\ [/tex]
⇥ Perimeter of rectangle = 2(length× breadth)
⇥ Diagonal of rectangle = √(length ²+breadth ²)
⇥ Area of square = side²
⇥ Perimeter of square = 4× side
⇥ Volume of cylinder = πr²h
⇥ T.S.A of cylinder = 2πrh + 2πr²
⇥ Volume of cone = ⅓ πr²h
⇥ C.S.A of cone = πrl
⇥ T.S.A of cone = πrl + πr²
⇥ Volume of cuboid = l × b × h
⇥ C.S.A of cuboid = 2(l + b)h
⇥ T.S.A of cuboid = 2(lb + bh + lh)
⇥ C.S.A of cube = 4a²
⇥ T.S.A of cube = 6a²
⇥ Volume of cube = a³
⇥ Volume of sphere = 4/3πr³
⇥ Surface area of sphere = 4πr²
⇥ Volume of hemisphere = ⅔ πr³
⇥ C.S.A of hemisphere = 2πr²
⇥ T.S.A of hemisphere = 3πr²
Answer: 201.14 cm^2
Step-by-Step Solution:
Radius (r) = 4 cm
Area of the Sphere = 4πr^2
Therefore,
= 4πr^2
= 4 * π * r * r
= 4 * 22/7 * 4 * 4
= 4 * 22/7 * 16
= 88/7 * 16
= 1408/7
=> 201.14
Area of the Sphere = 201.14 cm^2
Step-by-Step Solution:
Radius (r) = 4 cm
Area of the Sphere = 4πr^2
Therefore,
= 4πr^2
= 4 * π * r * r
= 4 * 22/7 * 4 * 4
= 4 * 22/7 * 16
= 88/7 * 16
= 1408/7
=> 201.14
Area of the Sphere = 201.14 cm^2
