Respuesta :
density = (mass/volume)
Mass = # atoms (in unit cell) x (mol / 6.022 x 10^23 atoms) x (58.69 g/mol)
The last number is the atomic mass of nickel
The number of atoms = 8(1/8) + 6(1/2) = 4
The volume (of the entire unit cell) = side^3 = (r x 8^(1/2))^3
6.84 g/cm3 = [4 atoms x (mol / 6.022 x 10^23 atoms) x (58.69 g/mol)] / [r x 8^(1/2)]^3
r = 1.36 x 10^-8 cm
Mass = # atoms (in unit cell) x (mol / 6.022 x 10^23 atoms) x (58.69 g/mol)
The last number is the atomic mass of nickel
The number of atoms = 8(1/8) + 6(1/2) = 4
The volume (of the entire unit cell) = side^3 = (r x 8^(1/2))^3
6.84 g/cm3 = [4 atoms x (mol / 6.022 x 10^23 atoms) x (58.69 g/mol)] / [r x 8^(1/2)]^3
r = 1.36 x 10^-8 cm
Answer:
Atomic radius, [tex]r=1.24\times 10^{-8}\ cm[/tex]
Explanation:
It is given that,
Density of nickel, d = 8.9 g/cm³
The density of a unit cell is given by :
[tex]d=\dfrac{Z\times A}{N_0\times a^3}[/tex]
Where
Z = no of atoms per unit cell
A = molar mass of an element in g/mol
N₀ = Avogadro's number
a = edge length
The edge length of FCC crystal is, [tex]a=\sqrt8r[/tex].............(1)
r = atomic radius
Nickel has a FCC structure and for FCC, Z = 4
[tex]a^3=\dfrac{Z\times A}{N_0\times d}[/tex]
For nickel A = 58.69 g/mol
[tex]a^3=\dfrac{4\times 58.69}{6.022\times 10^{23}\times 8.9}[/tex]
[tex]a^3=4.38\times 10^{-23}\ cm[/tex]
[tex]a=3.52\times 10^{-8}\ cm[/tex]
Atomic radius is, [tex]r=\dfrac{a}{\sqrt8}[/tex]
[tex]r=\dfrac{3.52\times 10^{-8}}{\sqrt8}[/tex]
[tex]r=1.24\times 10^{-8}\ cm[/tex]
Hence, this is the required solution.