Help me please, geometry

Answer:
x = 19.5 (nearest tenth)
Step-by-step explanation:
Trigonometric ratios
[tex]\sf \sin(\theta)=\dfrac{O}{H}\quad\cos(\theta)=\dfrac{A}{H}\quad\tan(\theta)=\dfrac{O}{A}[/tex]
where:
[tex]\theta[/tex] is the angle
Use the cos ratio to find the measure of the altitude (the perpendicular drawn from the vertex of the triangle to the opposite side):
[tex]\implies \cos(47^{\circ})=\dfrac{a}{18}[/tex]
[tex]\implies a=18\cos(47^{\circ})[/tex]
Now use the sin ratio to the the measure of side x:
[tex]\implies \sin(39^{\circ})=\dfrac{a}{x}[/tex]
[tex]\implies x=\dfrac{a}{\sin(39^{\circ})}[/tex]
[tex]\implies x=\dfrac{18\cos(47^{\circ})}{\sin(39^{\circ})}[/tex]
[tex]\implies x=19.50671018[/tex]
Therefore, x = 19.5 (nearest tenth)