Respuesta :

Required solution :

  • Diameter (d) = 7
  • Height = 8

Therefore,

  • Radius (r) = d / 2
  • Radius (r) = 7/2

We know that :

  • V = πr^2h

Substituting the values :

>> V = π × (7 / 2)^2 × 8

>> V = π × (49 / 4) × 8

>> V = π × 49 × 2

>> V = 98π

Henceforth,

  • 98 pi is the answer.

We know , the volume of a cylinder is given by the formula – πh, where r is the radius of the cylinder and h is the height.

  • Diameter - 7
  • Height - 8
  • radius = 7/2

Therefore, putting the values, we get,

[tex] \Large \mathcal \purple {Volume }\large\red\implies \tt \large \:\pi \: {r}^{2}h[/tex]

[tex] \Large \mathcal \purple {Volume }\large\red\implies \tt \large \:\pi \times \: \bigg(\frac{7}{2} \bigg)^{2} \: \times \: 8 \\ [/tex]

[tex] \Large \mathcal \purple {Volume }\large\red\implies \tt \large \:\pi \: \times \: \frac{7}{2} \: \times \: \frac{7}{2} \: \times \: 8 \\ [/tex]

[tex] \Large \mathcal \purple {Volume } \large\red\implies \tt \large \:\pi \: \times \: \frac{7}{2} \: \times \: \frac{7}{ \cancel2} \: \times \: \cancel{8} \: ^{ \orange4} \\ [/tex]

[tex]\Large \mathcal \purple {Volume }\large\red\implies \tt \large \:\pi \: \times \: \frac{7}{ \cancel2} \: \times \: {7} \: \times \: \cancel4 \: ^{ \orange2} \\ [/tex]

[tex] \\ \Large \mathcal \purple {Volume }\large\red\implies \tt \large \:\pi \: \times \: 7 \: \times \: 7 \: \times \: 2[/tex]

[tex]\Large \mathcal \purple {Volume }\ \large\red\implies \tt \large \:\pi \: \times \: 49 \: \times \: 2[/tex]

[tex]\Large \mathcal \purple {Volume }\large\red\implies \tt \large \:98 \:\pi[/tex]

Hence , the volume of cylinder is 98 pi

ACCESS MORE