Respuesta :
Required solution :
- Diameter (d) = 7
- Height = 8
Therefore,
- Radius (r) = d / 2
- Radius (r) = 7/2
We know that :
- V = πr^2h
Substituting the values :
>> V = π × (7 / 2)^2 × 8
>> V = π × (49 / 4) × 8
>> V = π × 49 × 2
>> V = 98π
Henceforth,
- 98 pi is the answer.
We know , the volume of a cylinder is given by the formula – πr²h, where r is the radius of the cylinder and h is the height.
- Diameter - 7
- Height - 8
- radius = 7/2
Therefore, putting the values, we get,
[tex] \Large \mathcal \purple {Volume }\large\red\implies \tt \large \:\pi \: {r}^{2}h[/tex]
[tex] \Large \mathcal \purple {Volume }\large\red\implies \tt \large \:\pi \times \: \bigg(\frac{7}{2} \bigg)^{2} \: \times \: 8 \\ [/tex]
[tex] \Large \mathcal \purple {Volume }\large\red\implies \tt \large \:\pi \: \times \: \frac{7}{2} \: \times \: \frac{7}{2} \: \times \: 8 \\ [/tex]
[tex] \Large \mathcal \purple {Volume } \large\red\implies \tt \large \:\pi \: \times \: \frac{7}{2} \: \times \: \frac{7}{ \cancel2} \: \times \: \cancel{8} \: ^{ \orange4} \\ [/tex]
[tex]\Large \mathcal \purple {Volume }\large\red\implies \tt \large \:\pi \: \times \: \frac{7}{ \cancel2} \: \times \: {7} \: \times \: \cancel4 \: ^{ \orange2} \\ [/tex]
[tex] \\ \Large \mathcal \purple {Volume }\large\red\implies \tt \large \:\pi \: \times \: 7 \: \times \: 7 \: \times \: 2[/tex]
[tex]\Large \mathcal \purple {Volume }\ \large\red\implies \tt \large \:\pi \: \times \: 49 \: \times \: 2[/tex]
[tex]\Large \mathcal \purple {Volume }\large\red\implies \tt \large \:98 \:\pi[/tex]
Hence , the volume of cylinder is 98 pi