Answer:
Given function:
[tex]q(x)=9x^2-24x+16[/tex]
To factor a quadratic in the form [tex]ax^2+bx+c[/tex], find two numbers that multiply to [tex]ac[/tex] and sum to [tex]b[/tex]:
[tex]ac=9 \cdot 16=144[/tex]
Two numbers that multiply to 144 and sum to -24 are: -12 and -12
Rewrite [tex]b[/tex] as the sum of these two numbers:
[tex]\implies q(x)=9x^2-12x-12x+16[/tex]
Factorize the first two terms and the last two terms separately:
[tex]\implies q(x)=3x(3x-4)-4(3x-4)[/tex]
Factor out the common term [tex](3x-4)[/tex]:
[tex]\implies q(x)=(3x-4)(3x-4)[/tex]
Therefore:
[tex]\implies q(x)=(3x-4)^2[/tex]