Respuesta :

-------------------------------------------------------------------------------------------------------------

Answer:  [tex]\textsf{(8, 0) and (-9, 0)}[/tex]

-------------------------------------------------------------------------------------------------------------

Given:  [tex]\textsf{f(x) = (x - 8)(x + 9)}[/tex]

Find:  [tex]\textsf{Determine the x-intecept}[/tex]

Solution:  In order to find the x-intercept we need to set the y-value to 0 which means that we are looking for the points that cross the x-axis.  Then we just solve for x and we get the x-intercepts.

Set y to 0

  • [tex]\textsf{f(x) = (x - 8)(x + 9)}[/tex]
  • [tex]\textsf{0 = (x - 8)(x + 9)}[/tex]

Determine the first x-intercept

  • [tex]\textsf{x - 8 + 8 = 0 + 8}[/tex]
  • [tex]\textsf{x = 0 + 8}[/tex]
  • [tex]\textsf{x = 8}[/tex]

Determine the second x-intercept

  • [tex]\textsf{x + 9 - 9 = 0 - 9}[/tex]
  • [tex]\textsf{x = 0 - 9}[/tex]
  • [tex]\textsf{x = - 9}[/tex]

There are two x-intercepts of the quadratic function that was provided which are (8, 0) and (-9, 0).

ACCESS MORE