Respuesta :

Answer:

A = -10.5

Step-by-step explanation:

To find the value of "A", you can plug x = 2 and f(x) = 3 into the equation. This will allow you to simplify and find the value of "A".

f(x) = 4x³ + Ax² + 7x - 1                     <---- Original equation

3 = 4(2)³ + A(2)² + 7(2) - 1                 <---- Plug x = 2 and f(x) = 3 into equation

3 = 4(8) + A(4) + 14 - 1                      <---- Solve 2³ and 2²

3 = 32 + A(4) + 14 - 1                        <---- Multiply 4 and 8

3 = 45 + A(4)                                    <---- Combine like terms

-42 = A(4)                                         <---- Subtract 45 from both sides

-10.5 = A                                         <---- Divide by 4

If A = -10.5, the final equation would look like this:

f(x) = 4x³ - 10.5x² + 7x - 1

Answer:

A = -10.5

Step-by-step explanation:

If f(2) = 3, then...

For that certain input, 2 = x. It also gives us an output of 3, meaning that...

[tex]3 = 4x^3 + Ax^2 + 7x - 1[/tex]

Since we know that 2 = x, we can substitute 2 for x in the equation... [tex]3=4(2^3) + A(2^2) + 7(2) - 1[/tex]

Simplify the right side:

[tex]3=4(8) + A(4) + 7(2) - 1\\3=32+4A+14-1\\3=32+4A+13\\3=45+4A\\[/tex]

Subtract 45 from both sides:

[tex]3-45=45-45+4A[/tex]

[tex]-42=4A[/tex]

Divide both sides by 4:

[tex]\frac{-42}{4}=\frac{4A}{4}\\-10.5=A[/tex]

CHECK:

[tex]f(x)=4x^3-10.5x^2+7x-1\\f(2)=4(2^3)-10.5(2^2)+7(2)-1\\f(2)=4(8)-10.5(4)+14-1\\f(2)=32-42+14-1\\f(2)=-10+14-1\\f(2)=4-1\\f(2)=3 \rightarrow \text{Correct!}[/tex]

Therefore,

A = -10.5

ACCESS MORE