Answer:
15,17
Step-by-step explanation:
Let the two consecutive odd numbers be (2x + 1) and 2x + 3
Twice the greater number : 2* (2x + 3) = 2*2x + 2*3
= 4x + 6
[tex]\sf \text{One third of smaller number=$\dfrac{1}{3}*(2x + 1)$}\\[/tex]
[tex]\sf = \dfrac{1}{3}*2x + \dfrac{1}{3}*1\\\\=\dfrac{2x}{3}+\dfrac{1}{3}[/tex]
Difference = 29
[tex]\sf 4x + 6 -( \dfrac{2x}{3} + \dfrac{1}{3})=29\\\\ 4x + 6 -\dfrac{2x}{3}-\dfrac{1}{3}\\\\\text{\bf Multiply the entire equation by 3}\\\\3*4x + 3*6 - 3*\dfrac{2x}{3}-3*\dfrac{1}{3}=3*29\\\\ 12x + 18 - 2x - 1 = 87[/tex]
Combine the like terms.
12x - 2x + 18 - 1 = 87
10x + 17 = 87
Subtract 17 from both sides
10x = 87 - 17
10x = 70
Divide both sides by 10
x = 70/10
x = 7
2x + 1 = 2*7 + 1
= 14 + 1
= 15
2x + 3 = 2*7 + 3
= 14 + 3
= 17
[tex]\sf \boxed{\text{\bf The consecutive odd numbers are 15,17}}[/tex]