The factor of the expression [tex]5p(p + 2)^{\frac{2}{3} } + 4(p + 2)^{\frac{1}{3} }[/tex] is[tex](p + 2)^{\frac{2}{3} } (5p^{3} + 10p^{2} + 20p + 4)[/tex]
To answer the question, we need to know what factorization is
Factorization is the process of breaking down an expressing into a simpler form containing its factors.
Since
[tex]5p(p + 2)^{\frac{2}{3} } + 4(p + 2)^{\frac{1}{3} }[/tex]
Since [tex](p + 2)^{\frac{1}{3} }[/tex] is common, we factor it out. So, we have
[tex](p + 2)^{\frac{2}{3} } (5p(p + 2)^{2} + 4)[/tex]
Expanding the bracket, we have
[tex](p + 2)^{\frac{2}{3} } (5p(p^{2} + 2p + 4) + 4) = (p + 2)^{\frac{2}{3} } (5p^{3} + 10p^{2} + 20p + 4)[/tex]
So, the factor of the expression [tex]5p(p + 2)^{\frac{2}{3} } + 4(p + 2)^{\frac{1}{3} }[/tex] is[tex](p + 2)^{\frac{2}{3} } (5p^{3} + 10p^{2} + 20p + 4)[/tex]
Learn more about factorization here:
https://brainly.com/question/11579257
#SPJ1