Respuesta :

Answer:

k = 4

Step-by-step explanation:

Given equation:

[tex]\dfrac{(\sqrt{3})^{5}}{(\sqrt{3})^{-4}}=(\sqrt{3})^{(2k+1)}[/tex]

[tex]\textsf{Apply exponent rule} \quad \dfrac{a^b}{a^c}=a^{b-c}:[/tex]

[tex]\implies (\sqrt{3})^{(5-(-4))}=(\sqrt{3})^{(2k+1)}[/tex]

[tex]\implies (\sqrt{3})^{9}=(\sqrt{3})^{(2k+1)}[/tex]

[tex]\textsf{Apply exponent rule} \quad a^{f(x)}=a^{g(x)} \implies f(x)=g(x):[/tex]

[tex]\implies (\sqrt{3})^{9}=(\sqrt{3})^{(2k+1)}[/tex]

[tex]\implies 9=2k+1[/tex]

[tex]\implies 2k=8[/tex]

[tex]\implies k=4[/tex]

ACCESS MORE