Answer:
[tex](t+6)(-2t+3)^{\frac{2}{3}}[/tex]
Step-by-step explanation:
[tex]\textsf{Given expression}:[/tex]
[tex]5t(-2t+3)^{\frac{2}{3}}+2(-2t+3)^{\frac{5}{3}}[/tex]
[tex]\textsf{Apply exponent rule} \quad a^{b+c}=a^b \cdot a^c:[/tex]
[tex]\implies 5t(-2t+3)^{\frac{2}{3}}+2(-2t+3)^{\frac{3+2}{3}}[/tex]
[tex]\implies 5t(-2t+3)^{\frac{2}{3}}+2(-2t+3)^{\frac{3}{3}}(-2t+3)^{\frac{2}{3}}[/tex]
[tex]\implies 5t(-2t+3)^{\frac{2}{3}}+2(-2t+3)(-2t+3)^{\frac{2}{3}}[/tex]
[tex]\textsf{Factor out common term }(-2t+3)^{\frac{2}{3}}:[/tex]
[tex]\implies (-2t+3)^{\frac{2}{3}}(5t+2(-2t+3))[/tex]
[tex]\textsf{Simplify}:[/tex]
[tex]\implies (-2t+3)^{\frac{2}{3}}(5t-4t+6)[/tex]
[tex]\implies (-2t+3)^{\frac{2}{3}}(t+6)[/tex]
[tex]\implies (t+6)(-2t+3)^{\frac{2}{3}}[/tex]