Respuesta :

By the definition of the hyperbolic function tanh x, we have proven that [tex]\frac{1-tanh \ x}{1 + tanh \ x}=e^{-2x}[/tex]

Hyperbolic functions & Proof of identities

By definition

[tex]tanh \ x=\frac{e^{x} -e^{-x}}{e^{x} +e^{-x}}[/tex]

Then,

[tex]\frac{1-tanh \ x}{1 + tanh \ x}=\frac{1-\frac{e^{x} -e^{-x}}{e^{x} +e^{-x}} }{1+ \frac{e^{x} -e^{-x}}{e^{x} +e^{-x}} }[/tex]

[tex]=1-\frac{e^{x} -e^{-x}}{e^{x} +e^{-x}} \div (1+ \frac{e^{x} -e^{-x}}{e^{x} +e^{-x}} })[/tex]

[tex]=\frac{e^{x} +e^{-x}-(e^{x} -e^{-x})}{e^{x} +e^{-x}} \div (\frac{e^{x} +e^{-x}+e^{x} -e^{-x}}{e^{x} +e^{-x}} })[/tex]

[tex]=\frac{e^{x} +e^{-x}-e^{x} +e^{-x}}{e^{x} +e^{-x}} \div \frac{e^{x} +e^{-x}+e^{x} -e^{-x}}{e^{x} +e^{-x}} }[/tex]

[tex]=\frac{e^{-x}+e^{-x}}{e^{x} +e^{-x}} \div \frac{e^{x} +e^{x} }{e^{x} +e^{-x}} }[/tex]

[tex]=\frac{2e^{-x}}{e^{x} +e^{-x}} \div \frac{2e^{x} }{e^{x} +e^{-x}} }[/tex]

[tex]=\frac{2e^{-x}}{e^{x} +e^{-x}} \times \frac{e^{x} +e^{-x}}{2e^{x}}[/tex]

[tex]=\frac{2e^{-x}}{1} \times \frac{1}{2e^{x}}[/tex]

[tex]=\frac{2e^{-x}}{2e^{x}}[/tex]

[tex]=\frac{e^{-x}}{e^{x}}[/tex]
[tex]=e^{-x} \times \frac{1}{e^{x}}[/tex]

[tex]= e^{-x} \times e^{-x}[/tex]

[tex]= e^{-x+-x}[/tex]

[tex]= e^{-x-x}[/tex]

[tex]= e^{-2x}[/tex]

Hence, we have proven that [tex]\frac{1-tanh \ x}{1 + tanh \ x}=e^{-2x}[/tex]

Learn more on Proof of Identities here: https://brainly.com/question/2561079

#SPJ1

ACCESS MORE
EDU ACCESS