if the diameter of it is 10, then its radius must be half that, or 5.
[tex]\textit{volume of a cylinder}\\\\ V=\pi r^2 h~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ r=5\\ h=10 \end{cases}\implies V=\pi (5)^2(10)\implies V=250\pi \\\\\\ \stackrel{\textit{and 75\% of that will be}}{\cfrac{75}{100}\cdot 250\pi }\implies \cfrac{3}{4}\cdot 250\pi \implies \stackrel{using~\pi =3.14}{588.75~m^3}[/tex]