The standard deviation of the frequency distribution is 5.54
The table of values is given as:
x f(x)
0-3 13
4-7 13
8-11 10
12-15 11
16-19 0
20-23 3
Rewrite the table by calculating the class midpoints:
x f(x)
1.5 13
5.5 13
9.5 10
13.5 11
17.5 0
21.5 3
Start by calculating the mean using:
[tex]\bar x = \frac{\sum fx}{\sum f}[/tex]
This gives
[tex]\bar x = \frac{1.5 * 13 + 5.5 * 13 + 9.5 * 10 + 13.5 * 11 + 17.5 * 0 + 21.5 * 3}{13 + 13 + 10 + 11 + 0 +3}[/tex]
Evaluate
[tex]\bar x = 7.98[/tex]
The standard deviation is then calculated as:
[tex]\sigma = \sqrt{\frac{\sum f(x - \bar x)^2}{\sum f }}[/tex]
So, we have:
[tex]\sigma= \sqrt{\frac{13 * (1.5 - 7.98)^2 + 13 * (5.5 - 7.98)^2 + (9.5 - 7.98)^2 * 10 + (13.5 - 7.98)^2 * 11 + (17.5 - 7.98)^2 * 0 + (21.5 - 7.98)^2 * 3}{13 + 13 + 10 + 11 + 0 +3}}[/tex]
Evaluate
[tex]\sigma= \sqrt{30.6496}[/tex]
Solve
[tex]\sigma= 5.54[/tex]
Hence, the standard deviation is 5.54
Read more about standard deviation at:
https://brainly.com/question/15858152
#SPJ1