Brainliest to whoever answers correctly.
A buoy is constructed out of the bottom half of a sphere with
a cone on top. The radius of the sphere and the radius of the
cone is 9 ft. The height of the buoy is 15 ft.
What is the volume of the buoy?
Enter your answer, in exact form, in the box.
ft3

Brainliest to whoever answers correctly A buoy is constructed out of the bottom half of a sphere with a cone on top The radius of the sphere and the radius of t class=

Respuesta :

  • r=9
  • h=15

Volume of semisphere

[tex]\\ \rm\dashrightarrow \dfrac{2}{3}\pi r^3[/tex]

[tex]\\ \rm\dashrightarrow \dfrac{2}{3}\pi (9)^3[/tex]

[tex]\\ \rm\dashrightarrow \dfrac{2}{3}\pi 729[/tex]

[tex]\\ \rm\dashrightarrow 2(243)\pi[/tex]

[tex]\\ \rm\dashrightarrow 486\pi ft^3[/tex]

Volume of cone

[tex]\\ \rm\dashrightarrow \dfrac{1}{3}\pi r^2h[/tex]

[tex]\\ \rm\dashrightarrow \dfrac{1}{3}\pi (9)^2(15)[/tex]

[tex]\\ \rm\dashrightarrow {27(15)\pi}[/tex]

[tex]\\ \rm\dashrightarrow 405\pi ft^3[/tex]

Total volume

[tex]\\ \rm\dashrightarrow (486+405)\pi[/tex]

[tex]\\ \rm\dashrightarrow 891\pi[/tex]

[tex]\\ \rm\dashrightarrow 2797.74ft^3[/tex]

Answer:

[tex]\sf V=891\pi \:\:ft^3[/tex]

Step-by-step explanation:

Formulas

[tex]\textsf{Volume of a cone}=\sf \dfrac{1}{3} \pi r^2 h[/tex]

[tex]\textsf{Volume of a hemisphere}=\sf \dfrac{2}{3} \pi r^3[/tex]

(where r is the radius and h is the height)

Given:

  • r = 9 ft
  • h = 15 ft

[tex]\begin{aligned}\textsf{Volume of buoy} & =\textsf{Volume of cone}+\textsf{Volume of hemisphere}\\\\\implies \sf V & = \sf \dfrac{1}{3} \pi r^2 h + \dfrac{2}{3} \pi r^3\\\\& = \sf \dfrac{1}{3} \pi (9)^2 (15) + \dfrac{2}{3} \pi (9)^3\\\\& = \sf 405 \pi + 486 \pi\\\\& = \sf 891\pi \:\:ft^3\end{aligned}[/tex]

ACCESS MORE
EDU ACCESS