Answer:
[tex]\textsf {55 miles}[/tex]
Step-by-step explanation:
[tex]\textsf {Company A}[/tex]
[tex]\textsf {Fee = 88}[/tex]
[tex]\textsf {Mileage = unlimited (0 charged)}[/tex]
[tex]\textsf {Equation = 88 (Statement 1)}[/tex]
[tex]\textsf {Company B}[/tex]
[tex]\textsf {Fee = 55}[/tex]
[tex]\textsf {Mileage = 0.60 per mile}[/tex]
[tex]\textsf {Equation = 55 + 0.60m (Statement 2)}[/tex]
[tex]\textsf {Now, the inequality will be :}[/tex]
[tex]\mathsf {88 < 55 + 0.60m}[/tex]
[tex]\mathsf {0.60m > 33}[/tex]
[tex]\mathsf {m > \frac{33}{0.60} }[/tex]
[tex]\mathsf {m > 55}[/tex]
Hence, for Company A will charge less than Company B when the mileage is greater than 55 miles.