Respuesta :
Answer:
d = 13 units
Step-by-step explanation:
calculate the distance d using the distance formula
d = [tex]\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2 }[/tex]
with (x₁, y₁ ) = (2, 1 ) and (x₂, y₂ ) = (14, 6 )
d = [tex]\sqrt{(14-2)^2+(6-1)^2}[/tex]
= [tex]\sqrt{12^2+5^2}[/tex]
= [tex]\sqrt{144+25}[/tex]
= [tex]\sqrt{169}[/tex]
= 13
Answer:
On a coordinate plane the distance is 13 units between the two points.
Step-by-step explanation:
Given :
- (2, 1) and (14, 6)
Find the Distance
Solution:
- Applying Distance formulae,
[tex] \rm \: D= \sqrt{(x_2 -x_1) {}^{2} +x_2 - x_1) {}^{2} } [/tex]
- [tex](y_2,y_1) = (6,1)[/tex]
- [tex](x_2,x_1) = (14,2)[/tex]
Solving,
- [tex]D = \sqrt{(14 - 2) { }^{2} + (6 - 1 ){}^{2} } [/tex]
- [tex] D= \sqrt{12 {}^{2} + 5 {}^{2} } [/tex]
- [tex]D = \sqrt{144 + 25} [/tex]
- [tex]D = \sqrt{169} [/tex]
- [tex]D = \sqrt{13 \times 13} [/tex]
- [tex]D= 13[/tex]
So distance is 13.