Answer: (0,-1)
Step-by-step explanation:
Let's start with the first inequality, [tex]y < -x^{2}+x[/tex]. To check which points satisfy this inequality, we can substitute the x- and y-coordinates and see if they satisfy the inequality.
- A) [tex]-1 < -0^{2}+0 \longrightarrow -1 < 0 \longrightarrow \text{ True}[/tex]
- B) [tex]1 < -1^{2}+1 \longrightarrow 1 < 0 \longrightarrow \text{ False}[/tex]
- C) [tex]-3 < -2^{2}+2 \longrightarrow -3 < -2 \longrightarrow \text{ True}[/tex]
- D) [tex]-6 < -3^{2}+3 \longrightarrow -6 < -6 \longrightarrow \text{ False}[/tex]
Once again, we can repeat this for the second inequality (but this time, we only need to check the points that satisfy the first inequality).
- A) [tex]-1 > 0^{2}-4 \longrightarrow -1 > -4 \longrightarrow \text{ True}[/tex]
- C) [tex]-3 > 2^{2}-4 \longrightarrow -3 > 0 \longrightarrow \text{ False}[/tex]
Therefore, the answer is (A) (0, -1).