Find sin (ABC + 60) NEED QUICK 100 PPOINTS

Answer:
B
Step-by-step explanation:
using the addition identity for sine
sin(A + B) = sinAcosB + cosAsinB
using the sine and cosine ratios in the right triangle
sinABC = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{AC}{AB}[/tex] = [tex]\frac{4}{5}[/tex]
cosABC = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{BC}{AB}[/tex] = [tex]\frac{3}{5}[/tex]
using the exact values
sin60° = [tex]\frac{\sqrt{3} }{2}[/tex] , cos60° = [tex]\frac{1}{2}[/tex]
Then
sin(ABC + 60)
= sinABC cos60 + cosABC sin60
= ( [tex]\frac{4}{5}[/tex] × [tex]\frac{1}{2}[/tex] ) + ([tex]\frac{3}{5}[/tex] × [tex]\frac{\sqrt{3} }{2}[/tex] )
= [tex]\frac{4}{10}[/tex] + [tex]\frac{3}{10}[/tex] [tex]\sqrt{3}[/tex]
= [tex]\frac{2}{5}[/tex] + [tex]\frac{3}{10}[/tex] [tex]\sqrt{3}[/tex]
sin<ABc
cos<ABC
Now