Respuesta :
[tex]26=20+6=20+\dfrac64\times4=20+1.5\times4[/tex]
which means 26 is 1.5 standard deviations away from the mean.
which means 26 is 1.5 standard deviations away from the mean.
Knowing that:
The standard score, or z-score, represents the number of Standard deviations that separate a random variable x from average.
Formula:
[tex]z = \frac{value-average}{standard\:deviation} [/tex]
Data:
z = ?
value = 26
average = 20
standard deviation = 4
Solving:
[tex]z = \frac{value-average}{standard\:deviation} [/tex]
[tex]z = \frac{26-20}{4} [/tex]
[tex]z = \frac{6}{4} [/tex]
[tex]\boxed{\boxed{z = 1.5}} \end{array}}\qquad\quad\checkmark[/tex]
Answer:
[tex]\underline{26\:is\:1.5\:standard\:deviation\:in\:relation\:to\:the\:average.}[/tex]
The standard score, or z-score, represents the number of Standard deviations that separate a random variable x from average.
Formula:
[tex]z = \frac{value-average}{standard\:deviation} [/tex]
Data:
z = ?
value = 26
average = 20
standard deviation = 4
Solving:
[tex]z = \frac{value-average}{standard\:deviation} [/tex]
[tex]z = \frac{26-20}{4} [/tex]
[tex]z = \frac{6}{4} [/tex]
[tex]\boxed{\boxed{z = 1.5}} \end{array}}\qquad\quad\checkmark[/tex]
Answer:
[tex]\underline{26\:is\:1.5\:standard\:deviation\:in\:relation\:to\:the\:average.}[/tex]