Answer:
[tex]\textsf{Length}=0.8x^2-0.7x+0.7\quad \sf units[/tex]
Step-by-step explanation:
Area of a rectangle = width × length
Therefore, to find the length of the rectangle, we need to divide the area by the width.
Using long division:
[tex]\large\begin{array}{r}0.8x^2-0.7x+0.7\phantom{)} \\x+0.5{\overline{\smash{\big)}\,0.8x^3-0.3x^2+0.35x+0.35\phantom{)}}}\\-~\phantom{(}\underline{(0.8x^3+0.4x^2)\phantom{-b))))))))))))))}}\\0-0.7x^2+0.35x+0.35\phantom{)}\\ \underline{-~\phantom{()}(-0.7x^2-0.35x)\phantom{-b)))))}}\\ 0.7x+0.35\phantom{)}\\\underline{-~\phantom{()}(0.7x-0.35)}\\ 0\phantom{)}\end{array}[/tex]
Therefore, the length of the rectangle is:
[tex]0.8x^2-0.7x+0.7[/tex]