Answer:
7/ Ans;
[tex] \frac{x + 2}{ x + 4} \div \frac{ {x }^{2} - 2x - 8}{ {x}^{2} + 2x - 8} \\ \\ \\ \frac{x + 2}{x + 4} \times \frac{ {x}^{2} + 2x - 8 }{ {x}^{2} - 2x - 8} \\ \\ \\ \frac{x + 2}{x + 4} \times \frac{(x - 2)(x + 4)}{(x - 4)(x + 2)} \\ \\ \\ =1 \times \frac{x - 2}{x - 4} \\ \\ \\ = \frac{x - 2}{x - 4} [/tex]
___o__o__
9/Ans;
[tex] \frac{ {x}^{2} - 9}{ {x}^{2} - 6x + 9} \div \frac{x + 4}{x - 3} \\ \\ \frac{ {x}^{2} - 9 }{ {x}^{2} - 6x + 9} \times \frac{x - 3}{x + 4} \\ \\ \\ \frac{(x + 3)(x - 3)}{(x - 3)(x - 3)} \times \frac{x - 3}{x + 4} \\ \\ \\ = \frac{(x + 3)}{1} \times \frac{1}{(x + 4)} \\ \\ \\ = \frac{x + 3}{x + 4} [/tex]
__o__o__
In the two questions, we first replace the division with multiplication with flipping the fraction after the division sign, secondly we analyze any equation that needs analysis to simplify it, thirdly, to simplify the fraction by deleting the numerator and the similar denominator .