Answer:
length of PR is [tex]4\sqrt{5}[/tex]
Is an isosceles triangle
because PQ is congruent to QR
Step-by-step explanation:
Calculate length of P(-6,0) R(2,4)
=> apply distance formula
[tex]\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\quad \sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}[/tex]
[tex]\sqrt{\left(2-\left(-6\right)\right)^2+\left(4-0\right)^2}[/tex]
[tex]4\sqrt{5}[/tex]
Calculate length of P(-6,0) Q(-3,4)
[tex]\sqrt{\left(-3-\left(-6\right)\right)^2+\left(4-0\right)^2}[/tex]
= 5
5(PQ) = 5(QR)