Explanation:
[tex]\bf point \ slope \ form: y-y_{1}=m\left(x-x_{1}\right)[/tex]
Find the slope: given points: (-4, 3), (-3, -1)
[tex]\sf slope: \dfrac{y_2 - y_1}{x_2- x_1} \ \ where \ (x_1 , \ y_1), ( x_2 , \ y_2) \ are \ points[/tex]
Insert values
[tex]\rightarrow \sf slope: \ \dfrac{-1-3}{-3-(-4)} =-4[/tex]
Equation in point slope form:
[tex]\sf\rightarrow y - 3 = -4(x - (-4))[/tex]
[tex]\sf\rightarrow y - 3 =-4(x + 4)[/tex]
Additional, in slope intercept form:
[tex]\sf\rightarrow y = mx + b \quad where \ 'm \ is \ slope' \ and \ 'b \ is \ y-intercept'[/tex]
[tex]\sf\rightarrow y = -4 x - 16 +3[/tex]
[tex]\sf\rightarrow y = -4x -13[/tex]