The coordinate of point P so that P partitions segment AB in the part-to-whole ratio of 1 to 5 is [tex](-\frac{22}3, \frac{23}6)[/tex]
The given parameters are:
A = (-9,3)
B = (1, 8)
m : n = 1 : 5
The coordinate of point P is then calculated using:
[tex]P = \frac{1}{m + n} (mx_2+nx_1,my_2+ny_1)[/tex]
Substitute known values
[tex]P = \frac{1}{1 + 5} (1 * 1 + 5 * -9, 1 * 8 + 5 * 3)[/tex]
Evaluate
[tex]P = \frac{1}{6} (-44, 23)[/tex]
Evaluate the product
[tex]P = (-\frac{22}3, \frac{23}6)[/tex]
Hence, the coordinate of point P is [tex](-\frac{22}3, \frac{23}6)[/tex]
Read more about line segment ratio at:
https://brainly.com/question/12959377
#SPJ1