[tex]\textit{internal division of a line segment using ratios} \\\\\\ P(-10,7)\qquad R(8,-5)\qquad \qquad \stackrel{\textit{ratio from P to R}}{4:5} \\\\\\ \cfrac{P\underline{Q}}{\underline{Q} R} = \cfrac{4}{5}\implies \cfrac{P}{R} = \cfrac{4}{5}\implies 5P=4R\implies 5(-10,7)=4(8,-5)[/tex]
[tex](\stackrel{x}{-50}~~,~~ \stackrel{y}{35})=(\stackrel{x}{32}~~,~~ \stackrel{y}{-20})\implies Q=\underset{\textit{sum of the ratios}}{\left( \cfrac{\stackrel{\textit{sum of x's}}{-50 +32}}{4+5}~~,~~\cfrac{\stackrel{\textit{sum of y's}}{35 -20}}{4+5} \right)} \\\\\\ Q=\left( \cfrac{-18}{9}~~,~~\cfrac{15}{9} \right)\implies Q=\left( -2~~,~~\cfrac{5}{3} \right)[/tex]