[tex]~~~~~~ \stackrel{\textit{\LARGE University Bank}}{\textit{Compound Interest Earned Amount}} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill &\$4000\\ r=rate\to 5\%\to \frac{5}{100}\dotfill &0.05\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{quarterly, thus four} \end{array}\dotfill &4\\ t=years\dotfill &4 \end{cases}[/tex]
[tex]A=4000\left(1+\frac{0.05}{4}\right)^{4\cdot 4}\implies A=4000(1.0125)^{16}\implies \boxed{A\approx 4879.56} \\\\[-0.35em] ~\dotfill\\\\ ~~~~~~ \stackrel{\textit{\LARGE Rosemont Savings Bank}}{\textit{Compound Interest Earned Amount}}[/tex]
[tex]A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill &\$4000\\ r=rate\to 5.5\%\to \frac{5.5}{100}\dotfill &0.055\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{semiannually, thus two} \end{array}\dotfill &2\\ t=years\dotfill &4 \end{cases} \\\\\\ A=4000\left(1+\frac{0.055}{2}\right)^{2\cdot 4}\implies A=4000(1.0275)^8\implies \boxed{A\approx 4969.52}[/tex]
well, "better" meaning more amount per same 4000, clearly the latter will be better.