[tex]~~~~~~ \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\dotfill & \$100000\\ P=\textit{original amount deposited}\\ r=rate\to 6.6\%\to \frac{6.6}{100}\dotfill &0.066\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{semiannually, thus two} \end{array}\dotfill &2\\ t=years\dotfill &20 \end{cases}[/tex]
[tex]100000=P\left(1+\frac{0.066}{2}\right)^{2\cdot 20}\implies 100000=P(1.033)^{40} \\\\\\ \cfrac{100000}{1.033^{40}}=P\implies 27288.97\approx P[/tex]